Theoretical Studies on the Color-Tuning Mechanism in Retinal Proteins.
نویسندگان
چکیده
The excited states of the three retinal proteins, bovine rhodopsin (Rh), bacteriorhodopsin (bR), and sensory rhodopsin II (sRII) were studied using the symmetry-adapted cluster-configuration interaction (SAC-CI) and combined quantum mechanical and molecular mechanical (QM/MM) methods. The computed absorption energies are in good agreement with the experimental ones for all three proteins. The spectral tuning mechanism was analyzed in terms of three contributions: molecular structures of the chromophore in the binding pockets, electrostatic (ES) interaction of the chromophore with the surrounding protein environment, and quantum-mechanical effect between the chromophore and the counterion group. This analysis provided an insight into the mechanism of the large blue-shifts in the absorption peak position of Rh and sRII from that of bR. Protein ES effect is primarily important both in Rh and in sRII, and the structure effect is secondary important in Rh. The quantum-mechanical interaction between the chromophore and the counterion is very important for quantitative reproduction of the excitation energy. These results indicate that the present approach is useful for studying the absorption spectra and the mechanism of the color tuning in the retinal proteins.
منابع مشابه
Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II.
The mechanism of color tuning in the rhodopsin family of proteins has been studied by comparing the optical properties of the light-driven proton pump bacteriorhodopsin (bR) and the light detector sensory rhodopsin II (sRII). Despite a high structural similarity, the maximal absorption is blue-shifted from 568 nm in bR to 497 nm in sRII. The molecular mechanism of this shift is still a matter o...
متن کاملElectrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra.
The color tuning mechanism of the rhodopsin protein family has been in the focus of research for decades. However, the structural basis of the tuning mechanism in general and of the absorption shift between rhodopsins in particular remains under discussion. It is clear that a major determinant for spectral shifts between different rhodopsins are electrostatic interactions between the chromophor...
متن کاملFTIR study of primate color visual pigments
How do we distinguish colors? Humans possess three color pigments; red-, green-, and blue-sensitive proteins, which have maximum absorbance (λmax) at 560, 530, and 420 nm, respectively, and contribute to normal human trichromatic vision (RGB). Each color pigments consists of a different opsin protein bound to a common chromophore molecule, 11-cis-retinal, whereas different chromophore-protein i...
متن کاملMolecular mechanism of long-range synergetic color tuning between multiple amino acid residues in conger rhodopsin
The synergetic effects of multiple rhodopsin mutations on color tuning need to be completely elucidated. Systematic genetic studies and spectroscopy have demonstrated an interesting example of synergetic color tuning between two amino acid residues in conger rhodopsin's ancestral pigment (p501): -a double mutation at one nearby and one distant residue led to a significant λ(max) blue shift of 1...
متن کاملTheoretical study on the mechanism of stable phosphorus ylides derived from 5-aminoindazole in the presence of different dialkyl acetyelenedicarboxylates
In the recent work, the reaction mechanism between triphenylphosphine 1, dialkyl acetylenedicarboxylates 2 in the presence of NH-acid, such as 5-aminoindazole 3 were investigated theoretically. Quantum mechanical studies were performed for evaluation of potential energy surfaces of all structures participated in the reaction mechanism both in gas phase and in dichloromethane. The first step of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical theory and computation
دوره 3 2 شماره
صفحات -
تاریخ انتشار 2007